Serum Effects & the Absorbance - Concentration Relationship for HDF Cells

> BIOE 342 February 13, 2008

Experimental Objectives

- Quantitatively assess the effects of FBS on HDF proliferation
 - Cell Proliferation Assay
- Determine qualitative effects on FBS on proliferation and the number of cells in the cell cycle
 - Anti-PCNA Staining
- Develop a relationship between absorbance and cell concentration
 - MTT Viability Assay

Cell Concentration & Absorbance Measurements

- HDF passage 8 cells seeded in duplicate in DMEM with 10% FBS at tabulated concentrations
- Cells incubated for 2 days
- Concentrations of one set measured with Coulter Counter
- Other set treated with MTT dye and absorbance measured with spectrophotometer

Concentration				
(cells/ml)				
50,000				
33,500				
25,000				
16,700				
8,300				
4,170				
0 (control)				

Proliferation Measurements

Cell Proliferation Assay

- Seeded HDF p. 9 cells in DMEM with 1% FBS
- After 4 hrs incubation, Day 0 wells measured (n=5)
- Remaining cells grown in DMEM (1, 5, or 10% FBS; n=3)
- Day 2, 7 & 5 attached cells counted with Coulter Counter Anti-PCNA Staining
- Seeded HDF p. 9 cells in DMEM (1, 5, or 10% FBS)
- After 2 days incubation, Anti-PCNA added
- 3 test wells received 1°, 2° antibodies
- 3 control wells received 1°, 2°, or no antibody
- Noted nuclei color and confluency with light microscopy

Absorbance and Cell Concentration Linearly Related

Saturation does not occur from 0 to 25,000 cells/ml
 Saturation would reduce linearity at high values

Cell Growth Occurs Exponentially

Exponential Model Reveals Doubling Time & FBS Levels Inversely Related

- Proliferation may be modeled exponentially for all serum levels (R² ≥ 0.97)
- Cell counts at 2, 5 & 7 days in 10% FBS levels all statistically different (ANOVA, Tukey's, p < 0.05)
 Statistical difference strengthens exponential model
- Cell counts at each FBS level statistically different after 7 days (ANOVA, Tukey's, p < 0.05)</p>
 - Positive relationship between FBS level & cell count
- Doubling times calculated as 4.6, 1.8 & 1.5 days for 1, 5 & 10% FBS respectively

FBS Increases Fraction of Red Nuclei

- At all conditions:
 - □ 95% cells elongated & spread, <5% rounded

		Nuclei Color (%)		Confluency
	Condition	Red	Blue	(%)
Tests	1% FBS	33	67	40
	5% FBS	45	55	60
	10% FBS	60	40	70
Controls	1° Antibody	0	100	70
	2° Antibody	0	100	70
	No Antibody	0	100	70

Number of Cells in Cell Cycle Positively Related to FBS Level

- Red corresponds to PCNA presence
 - PCNA is abundant in nucleus during S Phase
 - More cells prepare for mitosis at higher FBS levels
 - □ Number of cells in G_0 decreases as FBS increases
- Confluency increased with FBS levels
 - Proliferation increases as FBS concentration increases
- No red nuclei appeared in controls
 - Intrinsic peroxidase activity is insignificant
 - □ 2° antibody nonspecific binding is insignificant

FBS Increases Proliferation

Quantitatively from Cell Proliferation Assay

 Statistically significant increase in cell count from 14,000 to 100,000 cells/ml at 7 days as FBS increased from 1 to 10%

Qualitatively from Anti-PCNA Staining

- Increase in confluency from 40 to 70% suggests increased proliferation
- Fraction of cells in S phase increased from 33 to 60% as FBS increased from 1 to 10%
- Increased number of cells in the cell cycle predicts increased proliferation found in quantitative assay

Serum Effects & Absorbance-Concentration Relationship

- Absorbance and cell concentration found to have a linear relationship (R²=0.97)
- Proliferation may be modeled exponentially (R²≥0.97)
- At 7 days, a positive relationship between FBS level & cell count existed (ANOVA, Tukey's, p < 0.05)
- Doubling times decreased (4.6, 1.8 & 1.5 days) for 1, 5 & 10% FBS respectively
- Increase in percentage of red nuclei as FBS level is increased reflects an increase in number of cells in S-phase